پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

thesis
abstract

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و n×3 می پردازد. محاسبات انجام شده توسط روشهای مستقیم پیشنهادی، نشان دهنده این است که این روش ها بصورت دقیق و ریزبینانه به محاسبه psvd می پردازند بطوریکه محاسبه psvd برای ماتریسهای 1× n و n×1 بشرط n?1 ، قابل محاسبه نخواهد بود . در بخش پایانی نیز به طراحی اکولایزر و پیش کد گذار در سیستمهای siso می پردازیم به طوریکه ابتدا cci اعمال شده به سیستم فرستنده mimo ، با محاسبه bsvd از خواهد رفت که در ادامه با طراحی اکولایزر و پیش کد گذاری، باعث کاهش isi مابین کانالهای فرعی خواهد شد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)

The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...

full text

Robust Singular Value Decomposition

The singular value decomposition of a rectangular data matrix can be used to understand the structure of the data and give insight into the relationships of the row and column factors. For example, the rows linked to the rows might be experimental conditions of temperature and the experimental conditions linked to the columns might pressure. In a biological setting the rows might be linked to t...

full text

The Singular Value Decomposition

Carlo Tomasi Any m n matrix of rank r transforms the unit sphere in Rn into an r-dimensional hyperellipsoid in Rm. For instance, the rank-2 matrix A = 1 p2 264 p3 p3 3 3 1 1 375 (1) transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure 1 shows the map y = Ax : Two diametrically opposite points on the unit circle are mapped into the two endpoints of ...

full text

Singular Value Decomposition

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(A). In the above, σ1, . . . , σr are the square roots of the eigenvalues of AA. They are called the singular values of A. Our basic goal is to “solve” the system Ax = b for all matrices A and vectors b. A second goal is to solve the system using a numerically stable algorithm. A third goal is to solve the system in a reasonably efficient manner. For in...

full text

Fast Singular Value Thresholding without Singular Value Decomposition

Singular value thresholding (SVT) is a basic subroutine in many popular numerical schemes for solving nuclear norm minimization that arises from low-rank matrix recovery problems such as matrix completion. The conventional approach for SVT is first to find the singular value decomposition (SVD) and then to shrink the singular values. However, such an approach is time-consuming under some circum...

full text

Singular Value Decomposition A Primer

The singular value decomposition SVD is a powerful technique in many matrix computa tions and analyses Using the SVD of a matrix in computations rather than the original matrix has the advantage of being more robust to numerical error Additionally the SVD exposes the geometric structure of a matrix an important aspect of many matrix calcula tions A matrix can be described as a tranformation fro...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - موسسه آموزش عالی غیرانتفاعی و غیردولتی سجاد مشهد - دانشکده برق

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023